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Abstract
We attempted to predict the movements of the price of Bitcoin using machine learning
methods. We did not attempt to make a numerical prediction of the price but rather
attempted to predict whether the price will go up, down, hold steady or otherwise have too
much uncertainty regarding its movement. For this we encoded labels with associated
classes buy, sell or hold respectively. This was done through application of machine-driven
technical analysis, particularly using a long-short term memory neural network to recognize
(repeating) trends over time. As a way to combat the information loss in reducing a large
latent space to three classes we applied contrastive learning, which splits up the classifying
network into an encoder and decoder, with separate loss functions. The encoder uses a
contrastive loss to cluster similar classes, and the decoder gives probabilities based on the
clustering. Our results show that further investigation is necessary to determine the effective
application of these methods for the price prediction of Bitcoin.
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Introduction
The report starts by considering the design decisions we made from a more global level,
many of which were already in place early on, before the first line of code was written. It is
followed by a more in-depth look at the specific implementation in our code of these design
decisions. Lastly, the discussion section where we consider the multiple improvements to
our model we made learning on the go as well as possible (future) improvements that were
not implemented.

Why Bitcoin?
Our choice to approach Bitcoin as opposed to any other (more traditional) currency or stock
is not necessarily on account of it (or most other cryptocurrencies) being fundamentally
different from the point of price prediction. The motivation is that it is a relatively new and
novel currency, which still has over 10 years of price history. It is not yet as consolidated as
more traditional assets, which is one of the reasons why the market is so volatile. We expect
this volatility to increase with decreased market capitalization and vice versa, thus
conceding the possibility of it becoming more consolidated than existing traditional
currencies.
A difference caused by the current (comparatively) lower consolidation of Bitcoin is that if a
model has profitable performance then it would be able to leverage the larger movements
inherent in a less consolidated currency for more profit. We believe that the purely
speculative cryptocurrency market makes technical indicators more reliable than they would
be for assets with intrinsic value (as fundamental analysis would be another axis along
which price predictions can take place). In addition, Bitcoin is decentralized and as such
there is no single authority (in theory) that is able to alter these prices (in unpredictable
ways). Such that, theoretically, the price should be more predictable. Obviously, in practice, a
lower market capitalization (~€390 million at time of writing) and volume (~€25 million over
the past 24 hours at time of writing) allows for the ability of a single (wealthy) entity to
greatly alter its price trajectory. (Although they would have a hard time actually accumulating
the currency, due to its distribution and lack of centralized supply). This decentralization also
means that there is no single authority there to prevent market manipulation.
With Bitcoin being (on its inception) one of a kind also makes it an interesting object of study
in its own right. This was also the case for us and this being the case has also helped us at
the start, when orienting ourselves we had access to multiple papers on exactly the topic of
Bitcoin (or other cryptocurrency) price prediction1. Bitcoin is the obvious pick among these
as it is the oldest and thus has the most amount of available data.

Why Artificial Neural Networks?
There are many methods of classifying timeseries. Our considerations for applying artificial
neural networks (ANNs), are for its ability to generalize given enough training examples,
despite being more difficult to train, compared to methods like decision trees. ANNs are one

1 Table 1 from (Sebastião & Godinho, 2021) provides an extensive overview of past studies on the
application of machine learning methods for cryptocurrency price prediction.
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of many supervised learning algorithms, which are a good fit if you have some way of
rendering the desired outcome. This is certainly the case with price prediction as our data
can already return what we want it to predict simply by looking ahead. An ANN is also able to
handle input across multiple dimensions and does so in a non-deterministic way. This is also
helpful as we have no reason to suspect that this problem can be solved in a linear or
deterministic manner. We can expect such a relatively simple function to answer such a big
question to already have been found if that were the case. This complexity ties into the
necessity of non-deterministic outputs as we expect there to be times where different data is
contradicting each other, where some part(s) might also be expected to weigh more heavily
than others, thus resulting in an output that is non-deterministic.

Why Long-Short Term Memory Networks?
We believe a Long-short Term Memory (LSTM) network to be an excellent approach that
resolves many of the theoretical problems one runs into when trying to do financial
forecasting. The initial motivation is that we all already have some practical and theoretical
knowledge of artificial neural networks, ANNs, make up a larger class of networks that
LSTMs are a part of. First and foremost is the necessity that all financial forecasting relies
on knowledge of the past (and recognizing trends therein). Basic ANNs, categorically, are
unable to do this as they only consider single inputs in isolation. As a response to this
recurrent neural networks (RNNs) were developed. RNNs solve this by making the output of
a node function as an input on the next layer, but RNNs have their own problems with
sufficiently large sequences or deep networks; in these cases information gets lost. This
happens because learning information gets passed through the system through
multiplication and with a long enough sequence of multiplications any value above 1 will
approach infinity (and lose informative value) and any value below 1 will approach 0 (and
lose informative value).
The LSTM networks were developed as a response to this shortcoming and others from
RNNs, this is why we choose it. LSTM network work by taking sequences of inputs and
learning from them, being able to remember salient information from the sequence and
forget irrelevant information from the sequence all the while taking into account relevant
information of the present.
Our choice of LSTM networks has not been made following the consideration of every
possibility. It might very well be that a different approach could prove more effective2. It is a
fact that the artificial intelligence field, especially in recent times, develops at rapid speeds
such that it is an impossibility to be (or stay) fully up to date. This is reflected in our teaching
and subsequently in our own knowledge, e.g. we were not taught anything regarding
transformers and as such had no (existing) theoretical grounding if we were to attempt to
implement a transformer for this project. Thus it might be the case that there are

2 We ourselves had already discussed the idea to implement a transformer for our predictions.
Transformers are chronologically the next step to LSTMs, analogous to the step from LSTMs to RNNs.
The big benefit for transformers is the ability to take in a whole sequence at once. Currently the LSTM
reads the input data, row by row. Using transformers cuts training time and improves performance
over longer term patterns. We might have done so in addition to our LSTM network time permitted.
Transformers are behind the highly impressive GPT-3 language model and are able to account for
many of the problems one runs into that LSTM networks also attempt to resolve.
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shortcomings within LSTM networks (that we are not aware of) and these could even be
shortcomings that have been resolved by an existing algorithm (that we are not aware of).

Loss functions and Supervised Contrastive Learning

During the training of a neural network, a loss function needs to be chosen. Loss functions
generate feedback for the model during training. The feedback that the ANN receives is
nothing more than a number based on which it can alter its weights. At the output nodes the
total loss is calculated and this loss is propagated backwards over all nodes in the hidden
layers recursively until it reaches the input layer, giving instructions for how to change the
weights between those nodes along the way (where a larger loss is a larger change). This
process is called backpropagation. Loss functions evaluate how well a model is performing
to (mathematically) guide optimization. For classification tasks in machine learning ‘cross
entropy’ and (Mean Squared Error) MSE are common choices for a loss function3 - which
calculate the loss by measuring the distance between data points and a decision boundary
which separates two or more classes.
Supervised contrastive learning is a relatively novel method, which uses the distance
between training examples, rather than distance from the decision boundary. This is unlike
with cross entropy and MSE where the loss aims to separate classes on either side of a
decision boundary. With contrastive learning, points of the same class are pulled towards
each other, while repelling points of the opposite class. For a simplified example below,
imagine two classes expressed in two dimensions. If the neural network receives a new
input with a label, it will give an output in two dimensions (x, y). Based on the location of this
new point, contrastive loss will use pairs of datapoints, and try to adjust the domain of its
output classes, such that the classes overlap as little as possible, while being in proximity to
its own class. There are cases where contrastive learning has improved the performance of
a model, but this increase in performance appears not to be generalizable to all scenarios4 -
which was in line with our observations. Sometimes we saw an improvement in the
clustering of points, but it was not always consistent.

4 (Khosla et al., n.d.) p.1 discusses the increase in performance from the application of supervised
contrastive learning but does not extend this increase in performance to (certain) larger datasets.

3 Table 1 (p. 189) of (Wang et al., 2022) notes cross-entropy as a loss function belonging to
classification problems.
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Code Overview
This code overview consists of multiple parts which roughly and quasi-chronologically
describes the workings of the code. In addition, it describes parts of the code that are not
necessary for its working but that were necessary or helpful in creating a better working
model. This is, chiefly, the hyperparameter optimization.

Handling Data & Feature Engineering

What Are We Working With?
The format of data we are working with, is called a time series, which is similar to a table.
The table must have rows which denote (often) equal intervals of time, noting certain
properties at that time in the columns. This format of data is useful in many domains, such
as healthcare data, speech recognition, data about outer space or in the oceans. Time series
are everywhere, as long as data is recorded over a period of time. Many aspects of our
model can be generalized to other domains.
The finest resolution of financial trading data is called ‘tick’ data. These are time series, per
tick, which can be a very small unit of time, or even per trade. We used 1-minute data, as it is
more readily available, and makes training more practical. High resolution data, like 1-minute
data, is high in noise and is very long. If we take 120 minute intervals, we essentially have the
same chart, but over periods of two hours. The noise of lower timeframe movements is
removed. We choose to take 1-minute data, and reconstruct any timeframe we see fit.

5 Image source (left) (Hassanin et al., 2020)
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The first step to learning from data is to turn raw data (.csv) into machine-readable data to
learn from that can later be fed into our LSTM network as input. Not only do we perform this
conversion, we also engineered several features that we hoped would ‘cut through the noise’.
To this end our code has several different methods to deal both with converting and
transforming data to be used in our LSTM network.

Initt: Dataframes & Timeframes
The Initt method takes two arguments, minutes and path (to a folder containing exchange
data), and converts this file (.csv) into a dataframe which takes into account the relevant
timeframe in minutes. A dataframe is a way of storing arrays with labeled rows and columns
(e.g. price, volume) which allows for many types of transformations, e.g. adding new
columns/features, which are themselves a function of existing data. The data we load in has
only a couple of columns, which is not informative enough for us to expect to get an
accurate model. Thus, this initial dataframe from the Initt method forms the basis of the
eventual dataframe which is expanded by future feature engineering feats.
The minutes argument declares the amount of minutes between each successive datapoint
in our dataframe. This gives us the ability to train a model that is able to predict trends over
the timescale of days, hours or minutes, etc..
The data obtained from exchanges is generally noted in OHLCV format. This stands for
‘Open, High, Low, Close, Volume’, and the values are given per column. These values are used
to construct candlestick charts, and are used to build other metrics in technical analysis
(TA). ‘High’ and ‘Low’, will be the maximum and minimum, while ‘Open’ and ‘Close’, will be the
starting and ending price for that bar. Volume is simply the amount of goods exchanged
within the time period, measured by either currency (in this case USD).

Get_dataset: Feature Engineering
The get_dataset method takes three arguments, df, windowsize and get_features. Df is
simply the dataframe from the previous method. The windowsize argument denotes the
length of a single input example, which is the amount of bars/time periods in the context of
financial charts. The get_features argument is set to True by default, when set to False the
method simply returns the inputted dataframe sliced up into sequences of length
windowsize, as is, not adding features to it.

This method is itself a wrapper for doing most of the preprocessing in one call. The main
processing steps are: Given the OHLCV dataframe,

● Get y: the labels for supervised learning with the method get_label
● Add features with separate methods
● Normalize features, with different methods per feature.

○ with min-max of price, in the window (OHLC, EMA)
○ with min-max of own column, of whole price history (Volume)
○ with min-max of own column, in the window (RSI, MFI)
○ between 0-100 (oscillators)

● Slice dataframe into training examples of windowsize
● Return X and y, where
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○ X.shape = (nr_samples, windowsize, features)
○ Y.shape = (nr_samples, nr_classes)

Exponential Moving Average (EMA)
One of the features is the EMA. A ‘Moving Average’ looks at the history of the closing price
for a given length, and calculates the average price in that period. The Exponential moving
average weighs the most recent price history more. Moving averages are one of the most
widely used indicators6 - as they can show outliers from the average price. Another use case
is comparing different lengths of moving averages, such that we can see when shorter
impulses in movement cross the longer term price movement, and indicate a trend in the
market. The EMA can be calculated taking more previous data into account and multiple
EMAs can be used in parallel, e.g. to compare the average of the past day to that of the past
hour. The equation for the EMA is:

Here the EMA for the current time step gets calculated through use of the close price of the
current price step in combination with the past EMA. It is worth noting that EMAs have a
certain length (which one is free to decide) and that an EMA needs to be initialized by
calculating the average from a certain point, i.e. adding close prices over a certain length and
dividing by that length. We have a lot of different length EMAs7, where the length of each
step is dependent on the amount of minutes of the dataframe.

Volume-Weighted Average Price (VWAP)
Another one of the features is the VWAP, it is similar to an EMA but in addition to taking into
account the price it also takes into account the volume at which something was traded. The
intuition is that we do not wish to give equal weight to e.g. an extremely high price set only
by a single trade versus an extremely high price that is backed by thousands of trades. The
equation for the VWAP is:

The volume is the total amount of money that was traded (so a lot of small trades can have
the same impact on the volume as one big trade), the cumulative volume is volume based on
adding the total volumes of the past. We have multiple features for how far back the VWAP
goes8.

Relative Strength Index (RSI)
The Relative Strength Index is a momentum oscillator, measuring the speed and size of price
fluctuations. The RSI is calculated by first calculating an upward (U) or downward (D)
change, if the Close is higher than the previous close we do and

8 How far back for all of our VWAP features are: 4 hours, 12 hours, 1 day, 3 days, 1 week.
7 To be precise, the lengths are: 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610 and 987.

6 (Hatchett et al., 2010): “ The most popular method of forecasting basis is historical moving averages”
(p. 18). The EMA is a subtype of historical moving averages.
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otherwise . If the current and previous close are the same then
both U and D are 0 (and this would mean that there is no up or downtrend). Then to get the

relative strength we do: . Where SMMA (Smoothed Modified Moving
Average) takes these values and turns them into moving averages9. To then get the RSI we

take this value and turn it into a percentage (resulting in: ).

Money Flow Index (MFI)
Money flow index is an oscillator which uses price and volume data to try and find
overbought or oversold signals in our dataset. Essentially meaning that it is trying to find
points at which prices are higher or lower than they ‘should be’ such that we can expect that
a price change is imminent. Unlike conventional oscillators such as the RSI mentioned
before, the MFI incorporates not only the normal price index but also the volume data. An
MFI above 80 is considered overbought and an MFI below 20 is considered oversold,
although sometimes people also use 90 and 10 for this to decrease risk. The MFI is
calculated by taking the typical price of the last 14 time periods (where

). Then for each period, mark whether the typical
price was higher or lower than the prior period. This will show if the current money flow is
either positive or negative. Then we calculate the money flow by multiplying the typical price
by the volume for that period, where positive numbers indicate an uptrend and negative
numbers a downtrend. Then to calculate the money flow ratio we add all the positive
numbers together and divide this by the negative numbers (all still within these 14 periods).
Finally, the money flow index is simply converting the ratio into a percentage. Thus:

where

.

Stochastic RSI (StochRSI) & other oscillators
Both the Stochastic RSI, and the Ultimate Oscillator, are oscillators that range between 0 and
100. We can achieve this with the following function over another indicator, for instance RSI.
The stochastic RSI can be obtained by substituting X with the RSI values of the same time
series in the following formula.

This way, the values will reflect the original indicator, but always be ranging between the
same max and min. Often thresholds are added to indicate ‘oversold’ and ‘overbought’, and
can demonstrate waves of momentum for different periods of time. The oscillating format is
ideal for machine learning, as the normalized values will follow the same distribution as

9 How to calculate the SMMA is not covered but it bears much resemblance to the EMA.
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before normalization. Different lengths can also encapsulate the momentum of multiple
timeframes.

Get_label: what to predict?
Supervised learning is generally more effective than unsupervised learning. Unsupervised
learning means that patterns are learned without having the labels be given, thus a category
can be learned without learning from examples with given categories. An unsupervised
neural network learns to associate solely based on similarity. With supervised learning you
need labels but for unsupervised learning the neural network has to figure out correlations
within the data and across multiple examples. Unsupervised learning can perform very well
in certain situations, but with supervised learning we can direct the weights and biases
towards the desired conclusion, regardless of whether the problem is learnable10 or not.
However, the big challenge with supervised learning is the requirement of labeled data, which
is having an answer key to each input example, which the AI will try to learn to predict. Data
can originate from a ‘true’ function, for example samples generated by some polynomial
have that underlying polynomial as their ‘true’ function. Then ideally, the AI should predict the
polynomial, given the input examples without the true function. Since the market has no ‘true
function’ we look at the future for each point in time.
The get_label method takes a dataframe, which must have at least the OHLCV columns, and
for each bar, it will look into the future to determine if the price is higher or lower than the
current price. With the price from multiple lookahead lengths, the score of a single bar is
made, so that an average of long and short term is taken. There are two methods
implemented to translate this score to a classification for buy, sell or hold. We can use a
threshold (old method), where after normalization, we can assign thresholds (EG: 0.25 and
0.75) for classifying buy and sell, with the remaining being hold. This threshold can be moved
easily to balance the classes. The second and newer method takes moving averages over
the score, and uses that to determine noisy moves, with respect to the larger trend. By
adjusting the EMA lengths, we can balance classes, and adjust how sensitive the signals are.

10 An example of a learnable problem is: ‘given a picture of a cat or dog, decide what is in the
image.’’ An example of an unlearnable problem is: ‘Given data of previous coinflips, decide
what the outcome of the next coinflip will be’. N.B. The importance here lies in predictability,
some deterministic processes are not viable candidates (e.g. deterministic functions in
chaos theory) while some stochastic processes might be viable candidates (e.g. Gaussian
processes (which follow a normal distribution)).
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LSTM Network Training and Testing
The LSTM network takes the data from the previous section as input and uses it to try to find
patterns that are able to predict our desired output. This happens over several methods
which converge in a wrapper method and are called in succession, where the output of the
previous method is necessary for the method that follows it.

Desired Output
We want our model to be able to predict some useful information for us but it is not entirely
clear what this information should be. The first intuition is perhaps for it to predict the future
closing price. This is a prediction that a model will almost always get wrong as there are very
many possibilities, this is not a problem in itself, but the bigger problem is that it is not a
directly useful prediction. It is not directly useful since we might reasonably want to conduct
trades based on our model's prediction and this would already require us to calculate the
difference between the current price and the predicted future price to see if it would be a
good prediction. Instead we want our model to directly tell us what to do at the current time
step, do we buy more Bitcoin, do we sell (part of) our Bitcoin or do we hold onto our Bitcoin.
If our model has a solid estimate on whether the price will go down or go up it should predict
either buy or sell and when it is more unsure of what will happen next (or sure that it will not
go up or down) it will hold.
Our desired output is calculated based on taking any timestep and calculating what the best
move would have been at that moment (knowing what we know now). This is done through
the method get_label

Network Architecture
The architecture of our network is made up of three distinct parts, the encoder, the projection
head and the classifier. When training the neural network, the user can choose different
losses such as supervised contrastive learning, or categorical cross entropy. We would need
more trials of experimenting, to determine what loss function works best for the classifier.

Encoder (Bidirectional LSTM network)
The encoder encodes the input through a bidirectional LSTM network. This encoding is the
foundation of the network’s architecture as it is here that the data, sliced according to a
certain (temporal) window size, gets its features encoded as a mathematical representation
(which is dependent on the temporal sequence of the input data).
In a standard LSTM/RNN, each node’s prediction is based on the input data, and the previous
predictions of the previous bars in the time sequence, the data gets fed one way. The
bidirectional LSTM, will see dependencies that go both ways in time, not only forward.
Because LSTM networks can only view one input at a time, recognising patterns both
forwards and backwards is important to get the most out of the data. The motivation for a
bidirectional LSTM network is that it can glean valuable insights from getting the data
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forward and backward in time such that it is able to tune its weights in such a manner that it
also increases its accuracy when it only gets data given forward in time11.
The encoder’s setup, the amount of layers and the parameters for these layers, gets
initialized with the method create_encoder.
In the method make_LSTM, the encoder will require a fully connected network to connect to
the outputs of the LSTM layers. This is because our labels do not match the layer size of the
LSTM layers. We use the fully connected network to feedforward and converge the layersize
to an output of 3. This way, there is no mismatch between label and layer size, this is
necessary for backpropagation, and thus for learning to take place.

Projection Head
When training the encoder which is made up of LSTMs, to check with the labels, we need the
output layer to be of size 3, such that the network can output probabilities for the prediction
of the labels: buy, hold and sell. However, we wish to have a high-dimensional representation
of the data to retain as much information as possible. The projection head allows us to
connect the encoder to the labels. The LSTM network has an internal representation of
previous inputs in the sequence, its memory, and all this information cannot be translated
into the prediction classes which we want. This is a result of the structure of the LSTM
network, its representation is unfit to calculate a loss over. The projection head fixes this as
it adds a densely connected (vanilla) ANN layer; the LSTM network converges, i.e. gets
projected, to this layer to calculate the loss. This layer forms the output layer.
This is done with the method add_projection_head, whose chief input parameter is an
encoder such that its output becomes a new encoder with a projection head. This new
encoder is then trained and tested so that we have a frozen model (without projection head)
to train the classifier.

Classifier
The classifier is used to assign class labels to the data inputs, for example in image
recognition this would be classification in the sense of male/female or dog/cat. In our code
the classification will be into 3 categories; buy, sell and hold.
Our classifier uses the previously trained encoder with head and a variable named trainable.
If trainable is set to False, then the classifier freezes the previously trained layers so it can
use the pretrained encoder and only train the newly added layers. This means that those
previous layers’ weights are left unchanged while the newly added layers’ weights keep
changing during training. The classification class adds a fully connected layer on top of the
encoder, and another layer that matches the output size we want.

Supervised Contrastive Loss12

Supervised contrastive loss is a loss function which was created as an alternative to cross
entropy that is argued to better leverage label information. It does this by calculating the

12 Our implementation of supervised contrastive loss is an adaption of the example on the Keras
repository (Supervised-Contrastive-Learning.py at Master · Keras-Team/keras-Io, n.d.) (whose
application was for image recognition), theoretical grounding for supervised contrastive learning (and
thus loss) is from (Khosla et al., n.d.).

11 (Althelaya et al., 2018)
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distance from itself to an example of the same class and then contrasts this with the
distance to examples of another class, meaning that the loss is low if datapoints belonging
to each of the separate classes (buy, hold, sell) are encoded to separate multidimensional
representations. The distance calculation is done by taking the cosine distance of the
vectors and using this as the predictions’ probabilities you would see in a more typical
categorization method. The resulting idea is that we can take these distances and normalize
them between 1 and 0 to then apply cross entropy loss. If done correctly this will create
clusters as seen on the image below.
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Cross Entropy Loss
Cross entropy loss or log loss measures the performance of a model based on how far it
drifts away from the actual labels, so in our case loss increases as the distance from the
cluster increases. In our code this gets used in the classifier where it receives the earlier
created normalized distances with which it then creates the loss values. For this in our code
we use the already existing categorical cross entropy loss function from keras (we use
categorical cross entropy since we do not deal with just positive or negative values but with
the probabilistic predictions for classes buy, hold, sell).

Hyperparameter Optimization
In the training phase of a model it undergoes automated optimization, generally, in terms of
maximizing the accuracy or minimizing the loss. What is already set before the training
starts are all the hyperparameters. Whereas training changes the weights the
hyperparameters are all out of reach for changing through the training. Among these are the
amount of layers, the amount of nodes in a layer, the learning rate or even the loss function.
This shows the extent to which hyperparameters themselves can exert a great influence on
the accuracy and loss of the model. As such it is important to find a way to optimize these
hyperparameters to some extent as well and not have their specifications be the result of
puny human minds (puny with regards to their ability to manually find the optimal
hyperparameters). Even when you are utilizing techniques to prune unpromising
hyperparameter values it is still a computationally intensive process that requires a lot of
(automated) trial and error; the upside of this is that once the hyperparameter optimization is
complete there should be little to no reason to run this optimization ever again. That is, if
nothing else changes that could affect what/how the model optimizes. This very fact causes
hyperparameter optimization to commonly only occur near the end of the project, as a bit of
an afterthought13. With this also comes with the fact that it might not happen at all or be
lacking/incomplete (see subsection: Window Size Optimization & Timeframe Optimization
from the Discussion section).
Our hyperparameter optimization happens in the main1.py file and occurs only if sweep is set
to True. When it is, new models are initialized with differing hyperparameters, either over a
range (e.g. learning rate) or a set of values (e.g. batch size) or a category (e.g. supervised
contrastive learning [ON/OFF])14. In order to find the optimal combination of
hyperparameters it tries to minimize the validation loss across all runs. In order to save on
computing costs there is an early stopping mechanism such that highly unpromising runs (in
comparison to the previous runs) are cut off early; if the loss of the testing (validation) set
does not decrease in a given amount of epochs, then the run will stop.

14 The full list of these hyperparameters are: batch_size (batch size) {16, 32, 64}, learning_rate
(learning rate) [1e-6, 1e-3], dropout_rate (dropout rate) [0.6, 0.9], epoch_enc (nr. of epochs for the
encoder) {43, 67}, epoch_class (nr. of epochs for the classifier) {43, 61}, L1_size (nr. of nodes in the
first (LSTM) layer) {8, 16, 32} , L2_size (nr. of nodes in the second (LSTM) layer) {4, 8, 16}, D_size {3, 4,
5, 8, 16}, SupCon {True, False} and clipnorm {0.01, 0.1, 0.25, 0.5}.

13 Since hyperparameter optimization has the ability to increase performance significantly (but also
has the ability to not make much of a difference) an interesting middle-ground can be found with
algorithms that are (with less required computation) able to determine whether or not hyperparameter
optimization will greatly improve performance. See: (Tran et al., 2020).
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Conclusion
We conclude not just with the results from our specific undertaking but about the prospect
of predicting the price of Bitcoin more generally and on a broader scale the prospect of
financial forecasting (aided by machine learning techniques).

Results
Our results show a promising accuracy (>40% on certain runs) yet with less promising
results under the hood15. Many of the runs have an associated confusion matrix similar to
the one below. Such an outcome is generally ascribed to the imbalanced classification with
class imbalance problem; it is when classifications are skewed in such a way that it affects
the model’s predictions to be skewed as well16. In the confusion matrix below on the left we
can see that there is indeed a higher likelihood of hold, overall, as there are simply more
instances of it ( ). We can also conclude that this
was picked up through learning (to quite a dramatic extent) and was what caused the
prediction to converge to always be hold. Whilst failing to learn to predict reliably there is a
tiny success in the fact that it did at least pick hold over buy or sell.

This case (and its frequency across multiple runs) provides reason to assume that it is a
case of class imbalance, something for which there is not a cut and dry fix but something for

16 For an overview of the class imbalance classification problem and potential ways to combat this,
see: (Ali et al., n.d.).

15 N.B. The accuracy is calculated by dividing the amount of correctly predicted labels by the total
amount of predictions.
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which there are many different approaches with proven efficacy17. Our attempts at this have
been able to bring about a more varied prediction across the multiple classes. These have
not been consistently more accurate than a single class would have been. The greater the
class imbalance, the harder it was for our model to learn. The likelihood of a certain class
will be out of proportion, causing a negative feedback loop to predict the same class.
What the root(s) of this problem are is still an open question. There is a significant chance
that hyperparameters were (partly) responsible for a lack of ‘expressive power’ of our model
(see: Possible Improvements in the Discussion section). What is hard to deny is that
something is being learned by the encoder, merely by looking at the clusters forming we can
deduce that there is probably some sensible representation of our data in the latent space,
but it fails to accord well with the desired labels. A different response might be to say that it
does learn these clusters in accordance with the labels but that the classifier is unable to
extract this information from these clusters. In both of these cases it could mean that an
LSTM network or supervised contrastive loss (or both) are wrongheaded approaches or it
could be that these methods can still be hugely improved with mere hyperparameter tuning.
A good indication that problems might lie somewhere with the encoder would be by
implementing feature selection and seeing which features contribute to which degree to the
model’s performance (see: Possible Improvements in the Discussion section)18. The very last
option is that this is an undertaking that is doomed to fail. In some sense that is true (see
subsection below), but in many ways when we decide on an undertaking we can
simultaneously decide when that undertaking has succeeded. An existing paper published
on the subject of Bitcoin price prediction notes their 52% accuracy in predicting whether the
price will go up or will go down19. This can set a precedent where our undertaking is not a
fundamental failure as long as our predictions for buy, sell, hold are able to surpass 33⅓%
accuracy (without exploiting a classification imbalance to achieve this). There is little (but
not no) reason to assume that this is an unattainable goal.

Possibility of Bitcoin Forecasting
Whether or not (or to which extent) we were successful at predicting the price of Bitcoin is a
different question from the question to which extent we were unable to do this. Technical
analysis for financial forecasting has seen varying success as has the application for neural

19 (McNally et al., 2018) “The LSTM achieves the highest classification accuracy of 52%” (p. 339).

18 It is worth noting that such an implementation could possibly point to a necessity to revise the
features themselves, i.e. all/some features are shown to be (relatively) uninformative. That this will be
the case for all features seems like an unlikely possibility but it would still not detract greatly from the
undertaking as it would lead us to still be utilizing technical analysis but simply with different
technical indicators. The current set of indicators has resulted primarily from an approach of ‘seeing
what sticks’, this would merely be a continuation of that process. Likewise for the case where we need
to add more and/or revise existing technical indicators.
A problem would arise if it were to be shown that technical indicators overall do not contribute much
to performance compared to the simple open, high, low, close and volume features. This would mean a
failure of the technical analysis as a whole, which would be unlikely given its success when utilized by
human agents (the first part of footnote 14 elucidates this point).

17 For the claim that there is no ‘cut and dry’ method. (Abd Elrahman & Abraham, 2013): “The
researchers for solving the imbalance problem have proposed various approaches. However, there is no
general approach proper for all imbalance data sets and there is no unification framework” (p. 339).
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networks in tandem with technical indicators20. Even so, this could still be chalked up to
undiscovered technical indicators with high predictive powers or similar undiscovered
machine learning techniques with high predictive powers (or an alternative is a lack of
computing power with existing machine learning techniques). But there are other reasons to
assume that a high accuracy is highly unlikely with the application of technical analysis and
neural networks in tandem.
The seminal paper describing the workings of Bitcoin21 was published in 2008 around the
time of the failure of banking institutions in the United States, which caused a global
economic collapse. This failure had been predicted by some and many more (primarily due
to the power of hindsight) would say that the writing was on the wall, but what did not and
could not reliably predict such a crash was technical analysis. Bitcoin itself was set up to be
free from these centralized institutions as a currency with full transparency. Yet, of course,
this transparency does not necessarily mean that its valuation is transparent to thorough
technical analysis. This transparency, insofar as it cannot be meddled with by centralized
institutions, adds more hope toward successful application of technical analysis. On the
other hand, whatever centralized measures exist precisely to withhold someone from
meddling is what takes away hope toward successful application of technical analysis. As
mentioned in the Introduction section, a higher error rate might not matter much if it is able
to better exploit the large market movements that this, less consolidated and thus, more
volatile currency brings. As such, a decrease in predictive power with increased volatility
could still be a more successful model in the end when evaluated in terms of the returns it is
able to realize.
A striking example of this lack of centralized authority making technical analysis harder
came from an adjacent cryptocurrency called Dogecoin. Someone had a tremendously
successful prediction model for Dogecoin. Their prediction model was not based on
technical analysis but on sentimental analysis, and it was the sentiment that they
themselves expressed that was the predictor; they are being sued for running a pyramid
scheme22. This is not to say that adding sentimental analysis to the technical analysis would
be a solution (though it has the potential to increase accuracy significantly) but rather that
there are always more things that factor into something’s value than one is able to factor in.
We can already name the large effects on Bitcoin’s price that come from its ability to
‘compete’ with other cryptocurrencies, legislation aiming to centralize cryptocurrency (e.g.
through mandatory identity verification on exchange markets), environmental concerns

22 (Stempel, 2022)
21 (Nakamoto, 2008)

20 On the claim that technical analysis has varying success: In the abstract of (Park & Irwin, n.d.)
“Among a total of 92 modern studies [of technical trading strategies], 58 studies found positive results
regarding technical trading strategies, while 24 studies obtained negative results.”
On the claim that the application of technical analysis to neural networks has varying success: (Sezer
et al., 2017) states “The results indicate that by choosing the most appropriate technical indicators, the
neural network model can achieve comparable results against the Buy and Hold strategy in most of the
cases” (p. 1) which is on neutral ground and (Thawornwong et al., 2003) notes that “the proportion of
correct predictions and the portability of stock trading guided by these neural networks are higher than
those guided by their benchmarks” (p. 313), likewise (Sang & Di Pierro, 2019) notes that “We show that
our strategy, based on a combination of neural network prediction, and traditional technical analysis,
performs better than the latter alone” (p. 1). Not as convincing with N=3 as (I could find) no literature
review which handles artificial neural networks specifically whose features are technical indicators
exclusively.
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regarding crypto’s high power usage and much more. Technical analysis seems to be able to
capture some of these outside forces acting upon a valuation and predict accordingly but it
cannot integrate enough factors to do so reliably. How was the 2008 housing bubble to be
distinguished from those saying that the internet was just a fad (Dot-com bubble
notwithstanding). Attempts to integrate more and more of these sources into one’s
prediction, e.g. sentimental analysis, will still have an easily intelligible ceteris paribus case
with a wholly different outcome.
This does not need to mean that such an approach is doomed to fail, it could just mean that
the bar is simply set too high. The main gripe is that the predictions need to be reliable, but
human predictions in these cases can (and generally is) also be unreliable. Humans that
make trades and that are very often wrong but are still right when it counts can still turn a
profit. As such this might be what we measure success by for our model, profitability23. Even
a model that makes less reliable predictions can be more profitable than a human as they
(very) rarely take breaks and are okay getting paid a poverty wage equivalent in electricity.

23 An alternative measure for success based on accuracy was mentioned in the Results section.
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Discussion
This section covers multiple (possible) improvements to our model and some reflection on
the process of our project.

Implemented Improvements
Along the way, as we were both programming and checking the performance of our models,
we ran into ways to improve our model either by altering an existing implementation in the
code or adding an altogether new implementation. The ideas often come through observing
bottlenecks in our performance and finding ways to fix it or otherwise just trying something
new or coming across a paper with tips on what might bring about a better performing
model. This subsection highlights some of these implementations.

Bidirectional LSTM
When we started out we used a regular LSTM which only gets its input sequences
chronologically. Later on we switched to a bidirectional LSTM which considers its input
sequences moving forward in time and backward in time. The motivation for implementing
this was a published paper that saw improved performance for the bidirectional LSTM when
compared to the LSTM24. After implementing it ourselves we observed an improvement on
performance. The network was able to converge to clusters in less training epochs than with
the unidirectional LSTM. It did however take longer to train.

From Softmax to Sigmoid
Each layer in a neural network must have an activation function, to map the inputs to a fixed
domain. This dataprocessing step can help reduce over/underfitting, and can help with
exploding or vanishing gradients25. There are multiple activation functions that can be
considered.
An earlier version of our model outputted (the different labels) with a softmax activation
function. It was the relatively poor performance in combination with the three-dimensional
plots that gave us insight into how we might further improve our model. Looking at the plot
there was a strange and undesirable behavior that our outputs seemed to quite rigidly keep
outputting along two-dimensional axes in this three-dimensional plane. The problem we
might figure this to be is that softmax requires the sum of the output to be 1 (i.e.

). The sigmoid activation function did not have this
problem, and assigns a probability between 0 and 1, for each class separately. Upon
changing to this as the output activation function we saw some improved performance and
clearer clusters forming along the different axes on the three-dimensional plot. Though in

25 (Li et al., 2019) finds reduced overfitting with their uniquely created activation function. (Dubowski,
2020) compares many types of activation functions in sparse neural networks and finds
corresponding over and underfitting for specific activation functions. (Mercioni & Holban, 2020) notes
the advantages and disadvantages of several different activation functions including their (in)ability to
solve the exploding and vanishing gradient problem.

24 (Althelaya et al., 2018)
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retrospect, dimensions did not collapse only due to our activation function, but also due to
the model architecture and hyperparameters. A possible answer to why many sets of
hyperparameters resulted in scatterplots which resemble lines/planes is that the dimensions
collapsed because the network was not stable enough. Stable meaning, the balance
between learning rate and other hyperparameters, resulting in optimal learning. When the
parameters are not in the 'sweet spot' the resulting mathematical representation will make
less sense as the network has focused on the wrong details. Tweaking the activation
function helped that problem. Now we are usingNow we are experimenting with
combinations of softmax, sigmoid, and relu.

K-fold Cross Validation
Closing in on the end of the project, we still managed to implement k-fold cross validation,
where our dataset gets partitioned into k parts, and we train on all the parts except one,
which will be used as testing data. A new model will be trained and tested k times. By
shifting the part that is used for testing across all k runs we can use our whole dataset for
testing rather than only evaluate on a small subset of the data.
Ideally we would want to see similar performance across all models, but this was not the
case. Probably this was due to the differences in the training data, as one partition will
contain more uptrend or downtrend data than the other, thus creating imbalanced labels. We
could see much better clustering when using the last partition as a testing set. This could
have to do with the chronological order of the data. We will have to experiment more to make
any conclusive statements.
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Possible Improvements
Due to time constraints (and perhaps resource constraints) we were able to think of more
possible implementations that could improve the performance of our model than we were
able to realize. This section discusses some of those promising leads.

Window Size Optimization & Timeframe Optimization
Our current code already has quite a robust hyperparameter optimization in place. But it
does not have anything in place to optimize the window size. How to find a robust
optimization technique for the window size is not straightforward as there does not exist a
case where everything else remains the same for the inputs and the desired outputs; when
the window size is altered the entire dataset shifts such that a better accuracy or lower loss
does not in and of itself mean a better model.
With timeframes the exact same problem occurs such that whatever differing results the
model gives they are not truly commensurable. Nevertheless, it is also immediately obvious
that neither window size nor timeframe are arbitrary properties and that there are better and
worse choices, just without a clear idea of how to measure this beyond the level of intuition.

Handling Multiple Timeframes
From the start it was clear that a model with a more holistic overview of the market would be
better able to give predictions. This was already the guiding principle to our feature
engineering and our network architecture. An LSTM is able to have much more salient
information at its disposal than a vanilla RNN and an RNN than a vanilla ANN. What an LSTM
is lacking is multiple levels of overview. The most intuitively simple implementation of this
we came up with would be a network whose nodes themselves are made up of LSTM
networks with different timeframes that all converge with a single output. Simple on the level

26 Image source: (Pedregosa et al., n.d.) p. 3.
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of intuition does not mean simple on the level of implementation. Thus this is not quite as
straightforward as this description might make it out to be. These LSTM networks must
(most likely) have different input channels yet must converge, meaningfully, into a single
output layer. Hopefully this network would learn with which kind of inputs to give more sway
to long-term or short-term considerations, not stepping into the pitfall of suggesting trades
that would be good advice for the next minute, if only it was not followed by a successive
minute.
The next large problem one faces when trying to implement this was already touched upon
in the previous subsubsection and it is the question of how to decide which timeframes to
have, you do not wish to have redundant computation (by picking highly similar timeframes)
and you do not want to have your well-considered selections rest upon randomly picking
relatively far apart timeframes. It could be that randomly instantiating several of these
networks with multiple LSTM networks and applying a genetic algorithm for the selection
among these would prove fruitful, reservations on their incommensurability notwithstanding.

Higher Upper-Bound on Hyperparameter Optimization
Whilst hyperparameter optimization could be expanded by adding new hyperparameters to
optimize for, as shown above, there is still another possibility for improvement. This
improvement would come from increasing the upper bound on certain hyperparameters,
most notably the amount of layers and the amounts of nodes in a layer27. Whilst the amount
of parameters might already look staggering, in the tens and hundred of thousands, it is
nothing compared to the billions in state-of-the-art machine learning models. Bigger is not
necessarily better, but there is little reason to assume that we have already reached a
saturation point with our model. For our purposes it might mean much more, highly needed,
expressive power to capture nuances in the data.
Obviously there were practical considerations that caused us not to increase the upper
bound as it is a computationally intensive (and thus cumbersome and costly) process to
train huge models. It is still a worthwhile addition (especially) if the alternative is to abandon
this route altogether.

Feature Selection
Implementing some type of feature selection algorithm would give us insight into the
individual contribution of our features to the model’s performance which could lead to us
removing some features as they might not add to performance or could even detract from it,
not ‘cutting through the noise’ (as we would like from our features) but ‘adding to the noise’.
Such a feature selection algorithm would also make it (more) feasible to implement an
obscene amount of technical indicators (with computing power to match) and removing
those relatively uninformative features.
A possible approach to this is through implementation of a random forest-based feature
selection. This creates (random) trees based subsets of our features and checks how much

27 We do not expect to see similar possible gains in increasing the amount of epochs as the model
seems to consistently converge. Yet this might no longer happen when the amount of layers and
nodes per layer have been increased such that a higher upper bound for the amount of epochs would
also need to be implemented.
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they aid in the predictive capabilities, averaging over all of these means we can get a good
idea of the effectiveness of these features across many different contexts. This already has
a shortcoming which is that similar features will be judged similarly, e.g. our different length
EMAs.
With a proper feature selection module, we can experiment with much more values in an
automated manner. We will be able to optimize the hyperparameters of the features, besides
only those of the neural network.

Ensemble Learning
Improvements in performance could be achieved by implementing some type of ensemble
learning. “Learning algorithms that output only a single hypothesis [buy, sell, hold] suffer from
three problems that can be partly overcome by ensemble methods: the statistical problem, the
computational problem, and representation problem”28.
This statistical problem arises in those cases where there might be little difference between
two classes but the model still has to make the call between one of the two. The
computational problem arises when the model is stuck in a local minimum that does not
approach an optimal solution. The representation problem arises when the model’s output is
unable to represent the underlying ‘true function’ we presume there to be.
Slight differences in training data, or with hyperparameters, can change the mathematical
representation of our data. We ideally hope for all our representations to look similar, as that
would indicate us approximating some ‘true’ representation. However, due to the
high-variance and unpredictability of the problem, representations are very sensitive to small
changes. This can be compared to overfitting a model, and not being able to generalize well
enough.
The way ensemble learning is able to partly overcome these problems is by first taking a
multitude of models instead of one (naturally, this would require a lot of extra computation to
implement). To all these models a meta-algorithm is applied to pick the best prediction. This
way the different representations can all be incorporated to construct a big picture. There are
two main ways in which the best prediction is picked. The simplest would be a majority vote
(or hard vote), e.g. if we have three different models and the predictions for buy or hold are
two to one we output buy since it has more votes than hold29. A more nuanced approach
would be to take the average of all model’s results to guide one’s output, this method is
called soft voting.
Three popular methods of ensemble learning that will be discussed briefly are bagging,
boosting and stacking30. Bagging requires the least amount of changes to be made to our
codebase to be implemented, but it might also increase performance less. Bagging is done

30 For an introduction to the ensemble methods explaining the workings of (types of) bagging and
boosting see: (Bühlmann, 2012).
For an introduction to and applications of stacking see: (Wolpert, 1992).

29 The amount of models can be arbitrarily large but we can expect there to be a natural point of
saturation, namely when the models which have high independent performance have been exhausted
and a newly added model would have a significantly lower performance than the ones added thus far.
N.B. such a majority vote system would also require a tie-breaking system to function. Putting a
higher level of trust in the independently higher performing models for tie-breaking purposes is the
usual approach. (Even requiring an ordinal ranking of all models for tie-breaking edge cases.)

28 (Dietterich, n.d.) p. 3
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by taking subsets of data and training models on those subsets of data31. Over these
different models we apply the soft or hard vote to return our predictions.
Boosting would be the easiest to implement after bagging. With boosting we train a model
and then we train a new model which focuses on the subset of the data that the previous
model made incorrect predictions for. We are able to repeat this, either ‘boosting’ across
multiple initial models or ‘boosting’ a model multiple times. This method is more prone to
overfitting than either bagging or stacking because it specifically hones in on a subset of
data (instead of being randomly selected for bagging). Again soft or hard voting is applied
over these different models to return our predictions.
Stacking requires a significant amount of work to be implemented as it trains all new ‘types’
of models. Our current LSTM and contrastive loss based model would just be one among
many wholly different types of models, e.g. among implementations of support vector
machines or transformers. After having trained models (on the entire training set) for all of
these types we can again apply soft or hard voting to return our predictions. Stacking would
most likely give the best performance out of these implementations (if all models have
adequate performance independently) but would be extremely time intensive to implement32.
The only part we would (directly) be able to reuse for each model is the feature engineering
and label creation.
Ensemble learning has much to offer for exactly the types of problems we have run into with
our project; first and foremost to counter the imbalanced data classification problem we
have. Bagging and boosting would be the most likely candidates for their (comparative) ease
of implementation.

32 (Wolpert, 1992) states: “[T]he conclusion is that for almost any real-world generalization problem
one should use some version of stacked generalization to minimize the generalization error rate” p.
241

31 Cf. k-fold cross-validation. A method that similarly splits the data into subsets which is
implemented in our code. The main difference being that k-fold cross-validation is for validation
enhancing purposes whereas bagging is for performance enhancing purposes.
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